US ERA ARCHIVE DOCUMENT

Improved recovery of oil spills from water surfaces using tailored surfaces in oleophilic skimmers

by Victoria Broje and Dr. Arturo A. Keller

Donald Bren School of Environmental Science & Management University of California, Santa Barbara

Mechanical recovery

Grooved drums

U.S. Provisional Patent Application (serial no. 60/673,043) by UCSB.

Objectives

The primary objectives of this research were:

- to perform a full-scale test of novel oleophilic drum recovery surfaces tailored for oil spill recovery;
- to determine the relation between the operational parameters and oil recovery efficiency.

Test variables

- Ambient temperature≈10°C and ≈25°C
- Oil type
 Diesel, Endicott, and HydroCal 300
- Oil film thickness
 10 mm, 25 mm and 50 mm
- Drum rotation speed 30, 40 and 65 rpm
- Material of the drum surface Aluminum, Polyethylene, Polypropylene, Neoprene, Hypalon
- Drum surface pattern smooth and grooved

Oil properties

	Density (g/ml)		Viscosity (cP)		
Oil Type \ Temperature	15°C	25°C	15°C	25°C	Asphaltenes %
Diesel	0.833	0.823	6	2	0
Endicott	0.923	0.907	92	50	4
HydroCal 300	0.921	0.905	340	162	0

Ohmsett facility

Test results

Test results: HydroCal recovery

Smooth drum

30 rpm

40 rpm

65 rpm

Grooved drum

65 rpm

Test results: drum material and pattern

Test results: oil type, slick thickness and drum pattern at 25°C

Test results: oil type and slick thickness at 10°C. Smooth drums.

Test results: oil type and temperature. Smooth drums.

Test results: oil type and drum pattern at 25°C

Recovery efficiency of smooth and grooved drums at 25C and 25mm oil slick thickness

Test results: oil type and drum pattern at 10°C

Test results: oil viscosity and drum pattern

Effect of oil viscosity on the recovery efficiency

Conclusions

- Proposed grooved pattern can increase recovery efficiency by 100-200%.
- Recovery surface material can increase recovery efficiency by 20%.
- We determined the effect of oil viscosity, oil slick thickness, and drum rotation speed on the recovery efficiency.

Future work

- Tailoring recovery surface to oil viscosity.
- Oil spill recovery in cold and ice-infested waters.
- Graduation and new job!

Acknowledgements

This project was funded by

the U.S. Department of the Interior.

(Minerals Management Service)

and

the University of California Toxic Substances
Research and Teaching Program

Questions?

